

Master Course Syllabus

For additional course information, including prerequisites, corequisites, and course fees, please refer to the Catalog: <u>https://catalog.uvu.edu/</u>

Semester: Spring 2025	Year: 2025
Course Prefix: BIOL	Course and Section #: 1610-005
Course Title: College Biology I BB	Credits: 4

Course Description

Gives a broad exposure to many aspects of the life sciences. Covers topics of biochemistry, energetics, cell structure and function, genetics, and evolution.

Course Attributes

This course has the following attributes:

- □ General Education Requirements
- Global/Intercultural Graduation Requirements
- □ Writing Enriched Graduation Requirements
- ☑ Discipline Core Requirements in Program
- □ Elective Core Requirements in Program

□ Open Elective

Other: Click here to enter text.

Instructor Information

Instructor Name: Dr. Wyatt

Student Learning Outcomes

- 1 Appropriately use key terms and concepts currently used in the study of biology.
- 2 Describe cell structure and function, energetics, and genetics.
- 3 Discuss natural selection and the scientific evidence of evolution.
- 4 Discuss the relevance of biology to society.
- 5 Apply the process of science by generating hypotheses, critically evaluating data, and solving problems.

Course Materials and Texts

- ISBN: 978-1-4000-5218-9
- Links or pdfs of all the material will be provided.
- Students will need reliable internet access throughout the semester, preferably on a laptop.

Course Requirements

Course Assignments, Assessments, and Grading Policy

Component of Class	Percent of Grade
Exams	35
Module Quizzes	35
Class Preparation	15
In-Class Engagement and Participation	15

Exams (35% total grade)

- Will build on previous knowledge and therefore will be cumulative
- Can be taken twice.
- Your overall score for the exams will be the average between your first and second attempt.
- Will be open notes and open books, but students are required to work on them individually. As they are open notes, open books, you may take them from wherever and whenever fits within your schedule, but before the due date.
- The exams will test your ability to apply the foundational knowledge of biology in different contexts and will evaluate your ability to accurately communicate biological concepts
- They will be composed of multiple choice questions, true/false questions, fill in the blanks, and matching questions.
- You will only have 60 minutes to complete each attempt of an exam (accommodation time is accounted for within this time limit).

Final Exam Part 1

- Must be completed in class.
- No notes/resources are allowed on the first attempt, and you will have to take the first attempt by yourself (45-minute timed exam, accommodation time accounted for)
- Your second attempt is OPTIONAL and provided so that you may try for a higher score. This second attempt must also be completed in class.
- No notes/resources are allowed on the second attempt outside of your group members.
- You may work with your group only if you've attended ~80% of the class sessions.

Final Exam Part 2

• The only exam that you may not take twice will be the Final Exam Part 2 (there is only one attempt).

- For your Final Exam Part 2, you may work with your group only if you've attended ~80% of the class sessions.
- Will be open notes/open books and can complete at home (online).

Module Quizzes (35% total grade)

- Must be taken in class
- Due before the end of class after the completion of a module
- Each quiz will be on the recently finished module.
- Each quiz can only be taken once.
- Each quiz will be closed notes (no resources allowed) and students are required to work on them individually. You may not discuss your answers with anyone in the class.
- Please do not look at another student's computer. If you do, you will be asked to leave and will be given a 0.
- If you will be missing a quiz, it can be made up with advance notice (it must be taken before the due date if you know you will not be in class). Quizzes can only be taken in class following another quiz. For example, if you will be missing next week's quiz, you will take that after this week's quiz.
- If something unforeseeable happens and you are not able to give advance notice, make ups can occur in class following another quiz. A late deduction will apply. Quizzes can only be taken in class following another quiz. For example, if you missed last week's quiz, you can take that after this week's quiz.
- Each quiz will test your ability to apply the foundational knowledge of biology in different contexts and will evaluate your ability to accurately communicate biological concepts.
- They will be composed of multiple-choice questions, true/false questions, fill in the blanks, and matching questions.
- Your lowest 2 quizzes will be dropped.

Class Preparation (15% of final grade)

- The lecture quizzes will be based on the online lecture videos/articles and will be due before the modules to help you prepare for the in-class activities.
- These will be broken into three parts: a pre-lecture quiz, a post- lecture quiz, and an in-class preparation quiz.
- The pre-lecture quiz should be taken before and during the lecture videos. This will help you identify what you already know and what you learned by watching the lectures. The post-lecture quiz should be taken after watching the lecture videos. These questions will help you recall the information that you learned in a multiple-choice format. Each pre/post lecture quiz will be open notes and open books. 2 attempts are allowed for each post-quiz (highest score is kept)
- The in-class preparation quiz will be given in the first five minutes of class when we start a new module. Each quiz will be closed notes (no resources allowed) and students are required to work on them individually. You may not discuss your answers with anyone in the class. Please do not look at another student's computer. If you do, you will be asked to leave and will be given a 0.
- As the main goal of these quizzes is to help you prepare for the class activities, if you are not able to make it to class, there will be <u>no make up options</u>.
- 4 quizzes will be dropped at the end of the semester.

In-Class Engagement and Participation (15% of final grade)

- This category is to evaluate your engagement in class. It will be assessed with in-class activities, participation points, and group evaluations. The goal is to receive all points in this category as long as you are attending class everyday.
- The learning activities will apply the material in different contexts during lecture.
- You may work in your groups to complete these assignments but will submit your assignments individually for your learning activities.
- Only 1 attempt will be allowed for the individual learning activities
- Each activity will be open notes and open books
- Each day, you will be given an attendance quiz on Canvas in class.
- Four individual grades will be dropped at the end of the semester from this category.

Required or Recommended Reading Assignments

- While not required, taking a first semester of general chemistry at the same time as BIOL 1610 or before, is helpful. To be successful in this course, it is recommended that you review Chapters 1-3 of <u>OpenStax Biology 2e</u> and Chapters 1-2, 5, and 7 of <u>OpenStax Chemistry 2e</u>.
- Biology 2e by Clark, M.A, Choi, J., & Douglas, M. OpenStax. Rice University. Print ISBN-13: 978-1947172517 Available for free online at: <u>OpenStax Biology 2e.</u>

General Description of the Subject Matter of Each Lecture or Discussion <u>Biochemistry</u>

- Identify methyl, hydroxyl, carbonyl, carboxyl, amino, sulfhydryl, and phosphate functional groups.
- Distinguish between dehydration and hydrolysis reactions.

Water Biochemistry

- Draw the structure of several water molecules that are interacting with other molecules such as NaCl and indicate 1) the electron distributions in each covalent bond, 2) the partial charges on each atom, 3) each hydrogen bond, and (4) describe and identify ionic bonds.
- Compare hydrogen bonds and covalent bonds in terms of the mechanisms and strength of attraction between the atoms involved.
- Determine if a molecule is hydrophilic, hydrophobic, or amphipathic based on ionic, polar, and non-polar properties.
- Label covalent bonds as polar or nonpolar based on the difference in electronegativity between atoms.
- Discuss why water is biologically important as an excellent solvent and in terms of high heat capacity, cohesion, and adhesion.

Proteins

- Label the four components of an amino acid and explain the role of each in terms of how the molecule functions in a protein.
- Describe each of the four levels of protein structure and explain how each influences the protein's final size, shape, and chemical properties.
- Describe at least three functions that proteins serve in cells.
- Predict whether the R-group on an amino acid that you haven't seen before will interact with water.
- Label elements of primary, secondary, tertiary, and quaternary structure on a model of a protein that you haven't seen before.
- Fill in the following information for proteins in this table:

Monomer is called	Structure of the monomer	Diagram when two monomers link together	The polymer that is formed is called	The function of the polymer in cells

Nucleic Acids

- Describe at least three functions that nucleic acids serve in cells
- Define complementary base pairing and explain its connection to the observation that DNA strands are antiparallel.
- Use the pairing rules to 1) explain the observation that in DNA, %A = %T and %G = %C, 2) predict the sequence of a complementary strand of DNA when given one strand, and 3) calculate the percentage of each base in a DNA molecule when given the percentage of one base.
- Discuss the similarities and differences between DNA and RNA based on their structures, chemical composition, location, and functions in the cell.
- Label the components and directionality on a model of nucleic acid that you haven't seen before
- Fill in the following information for nucleic acids in this table:

Monomer is called	Structure of the monomer	Diagram when two monomers link together	The polymer that is formed is called	The function of the polymer in cells

Carbohydrates

- Describe at least three functions that carbohydrates serve in cells.
- Rank the potential energy in the following bonds from highest to lowest C-C, C-H, C-O and C= O.
- Discuss how the structure of carbohydrates relate to the use of carbohydrates as energy storage molecules for the cell.
- Fill in the following information for carbohydrates in this table:

Monomer is called	Diagram when two monomers link together	The polymer that is formed is called	The function of the polymer in cells

<u>Lipids</u>

- Use drawings, models, or other representations to compare the structures of fats, phospholipids, and steroids
- Label the hydrophilic head and hydrophobic tails on a drawing of a phospholipid, then make drawings that include water molecules to explain how phospholipids spontaneously form bilayers in water
- Draw the differences between a saturated and unsaturated fatty acid at the carbon bond level.
- Given a structural model of a lipid you've never seen before, 1) identify it as a fat, phospholipid, or steroid, 2) determine if it is saturated or unsaturated, and 3) predict its function in the cell.
- Given several models of membranes, predict how differences in phospholipid composition and cholesterol content will affect their relative fluidity and permeability, and explain your reasoning.

Comparing The Major Classes of Biological Molecules

- Compare the monomer subunit, bond responsible for polymerization, and important biological function(s) observed in proteins, nucleic acids, and carbohydrates.
- Compare the primary, secondary, and tertiary structures of proteins, RNA, and DNA.
- Analyze how the structure of biological molecules impacts their function, including explaining the connections among the following three statements: 1) amino acids are much more diverse in structure and chemical properties than nucleotides, 2) in terms of diversity in shape and chemical properties, proteins > RNA > DNA, and 3) in terms of diversity in function, proteins > RNA > DNA.

Membrane Structure and Transport

- Draw a cell membrane and label integral and peripheral proteins, carbohydrate components, and lipid components.
- Compare the processes of diffusion, osmosis, and facilitated diffusion, and provide biological examples that illustrate each process.
- Explain why ions and polar molecules do not move across plasma membranes efficiently without a transport protein.
- Define passive and active transport and explain the role of channels, carriers, and pumps in transport.
- Given several ions and molecules, predict the relative rates at which they will cross a plasma membrane in the absence of membrane proteins. Explain your reasoning.

Cell Structure and Organelles

- Compare key elements of prokaryotic versus eukaryotic cell structure.
- Compare key elements of plant versus animal cell structure.
- Make a flowchart showing how proteins are processed and packaged or unpackaged as they move from ribosomes to the interior of the rough ER to Golgi to motor proteins to their destination.
- Compare the structure and function of microtubules, actin filaments (microfilaments), and intermediate filaments.

- Propose hypotheses to explain 1) the adaptive significance of organelles (the advantages and disadvantages of having membrane-bound structures inside cells), and 2) why organelles are more common in eukaryotes than bacteria and archaea.
- Predict what would happen to a cell if a particular organelle or structure was altered in a specified manner.
- Predict the function of a cell when given a drawing of a cell, a micrograph, or a description of a cell's structure and organelle content. Explain your reasoning.
- Predict the structure of a cell and its organelle content when given a cell's function. Explain your reasoning.
- Predict whether photosynthesis and/or cellular respiration will occur in a specific plant or animal cell, based on information about the cell's structure and function.
- Predict what would happen to a particular protein or overall cell function if a specified element or process in the endomembrane system were altered.

DNA Replication

- Describe the function of major components of the replisome: helicase, topoisomerase, DNA polymerase, DNA ligase, and primase.
- Use a drawing that you create to explain the statement: "A newly synthesized DNA molecule is half old and half new."
- Given a diagram of a DNA molecule during replication, label the following: the origin of replication, directions of replication, replication fork, the leading strand, and lagging strands and their polarities, and the replisome.
- Explain how DNA damage and/or mismatches are detected and repaired.
- Explain 1) why lagging strand synthesis is an appropriate name, and 2) why Okazaki fragments occur.

Central Dogma

• Make a flow chart summarizing the flow of information in cells from gene to protein. Label arrows connecting mRNA, DNA, and proteins, and explain which gene expression process each arrow represents.

- Explain how the genetic code relates transcription to translation and why it is considered redundant.
- On diagrams of transcription initiation and transcription elongation, label the template and coding strands, initiation complex, promoter site, RNA polymerase, ribonucleotides, the direction of RNA polymerase movement, and direction of RNA synthesis.
- On diagrams of translation initiation, translation elongation, and translation termination, label the small and large ribosomal subunits, mRNA, tRNA, rRNA, reading frame, start codon, stop codon, release factor, and tRNA binding sites (E, A, and P). Circle and label the locations where codon- anticodon recognition and peptide bond formation occur.
- Add elements to your central dogma model that represent "exceptions" such as 1) production of rRNA, tRNA, and "other RNAs", 2) DNA replication, and 3) the action of an enzyme called reverse transcriptase, which catalyzes the synthesis of DNA from an RNA template.
- Given a specific change in a DNA coding strand or a specific error in transcription or translation, predict the consequences for the gene product.
- Use a copy of the genetic code to predict the sequence of the amino acids produced from a given mRNA or double stranded DNA fragment. Identify the start and stop codon.

Enzymatic Reactions

- Explain 1) why "active site" is an appropriate term, 2) the mechanisms responsible for the observation that enzymes lower activation energies, 3) why most enzymes catalyze one specific reaction, and 4) why enzymes increase reaction rates but do not make endergonic reactions exergonic.
- Explain 1) the general role of ATP in the cell, 2) what it means to say that two chemical reactions are coupled, and 3) why a large change in free energy level occurs when an enzyme or substrate is phosphorylated. (Recall that phosphorylation adds 3 tightly packed negative charges.)
- Distinguish between competitive inhibition and noncompetitive inhibition.
- Explain how enzyme activity can be regulated by cofactors and coenzymes.
- Explain how physical factors affect enzyme structure and reaction rate.

• Explain how feedback inhibition regulates metabolic pathways.

Photosynthesis

- Describe how chlorophyll molecules harvest light energy and transfer energy.
- Explain the relationship between the light-dependent reactions and the Calvin cycle.
- Make a chart summarizing the inputs and outputs of PSI, PSII, and the Calvin cycle using NADPH, Glucose, H2O, O2, CO2, H+ gradients, and ATP. Using this chart, explain the energy transformations that occur and the role of rubisco.
- Explain to a non-scientist how the CO2 in "weightless" air is the source of mass in a redwood tree.
- Predict the possible consequences for the production of ATP and NADPH if a component or process in the photosynthesis pathway is altered.

Cellular Respiration

- Make a chart summarizing the inputs and outputs of glycolysis, pyruvate processing, the citric acid cycle, and oxidative phosphorylation, using NADH, FADH2, Glucose, Acetyl CoA, Pyruvate, O2, CO2, H+ gradients, and ATP. Using the chart, explain how energy is transferred or transformed in each stage.
- Explain how cells use fermentation pathways to obtain energy from glucose in the absence of oxygen.
- Predict the possible consequences if a step in the glucose oxidation (cellular respiration) pathway is altered.
- Predict the effects of altering specific parts of the electron transport chain or ATP synthase.

<u>Overall</u>

- Distinguish between catabolic and anabolic reactions
- Given the summary reactions for photosynthesis and respiration, compare 1) the reactants and products of each process, and 2) the energy transformations that occur.

Mutations

- Rank the following mutations in terms of greatest to least impact on the structure and function of genes and gene products: missense (change amino acids), nonsense (change to "stop"), frameshift (change reading frame), and silent (no change in the product). Explain your reasoning.
- Defend the statement "mutation is the ultimate source of genetic variation," and explain why mutation is random with respect to its impact on an individual's fitness.
- Explain why cancer is 1) associated with mutations that regulate the cell cycle, and 2) more common in older than younger people.

<u>Mitosis</u>

- Explain why chromosome replication has to occur before mitosis, in interphase.
- Diagram the sequence of stages in the eukaryotic cell cycle (M, G1, S, and G2) and label the major event or events that occur in each.
- Given a labeled drawing showing the phases of mitosis, explain what is happening to the chromosomes and how it helps ensure that each daughter cell gets a complete and identical set.
- Given a micrograph or drawing of a cell you've never seen before, label the chromosomes, chromatids, sister chromatids, and homologous chromosomes, if present, and determine the haploid number and ploidy.
- Given a micrograph or drawing of a cell you've never seen before that is undergoing mitosis, explain what is currently happening to the chromosomes.
- Predict the consequences of altering a given stage (M, G1, S, and G2) in the cell cycle in terms of the cell's structure or fate.

Meiosis

- Explain the differences between somatic cells and germ cells. Describe the outcomes of cell division between these two categories of cells.
- Explain why chromosome replication has to occur before meiosis, in interphase.
- Differentiate between the genetic information held on two homologous chromosomes, two nonhomologous chromosomes, two sister chromatids, and two non-sister chromatids.
- Explain why the segregation of homologous chromosomes in meiosis I leads to a reduction in ploidy.
- Explain why no two haploid cells that result from meiosis are alike in terms of genotype and why this is important in terms of offspring fitness.
- Given a micrograph or drawing of a cell you've never seen before that is undergoing meiosis, explain what is currently happening to the chromosomes.

• Given a specific error in meiosis, predict the haploid genotypes that result and discuss the consequences for offspring.

Genetic crosses and human pedigree analysis

- Set up Punnett squares for monohybrid crosses and dihybrid crosses. Label which elements in the Punnett square and dihybrid cross represent the genotypes of egg, sperm, and offspring. Explain how you can determine the frequency of each egg and sperm genotype and how you can use this information to calculate the frequencies of offspring genotypes and phenotypes.
- Define polygenic inheritance and explain why it produces traits with a continuous variation.
- Using a drawing that shows the phases of meiosis, label the events that explain Mendel's principles of segregation and independent assortment. Add drawings to show how independent assortment can generate genetic variation in offspring. In each case, explain your reasoning.
- On a pedigree, label 1) genetic males and females, 2) affected and unaffected individuals, and 3) generations.
- Given information on parental and offspring phenotypes, determine whether the dominance system involved is 1) in a complete dominance, codominance, or incomplete dominance system and 2) if it is an autosomal or sex-linked trait.
- Based on the data in a pedigree, predict 1) whether the trait in question is autosomal or sexlinked and 2) which alleles are dominant and recessive.

Relevancy

• Apply evidence-based reasoning and biological knowledge to inform health, environmental, and/or societal related decisions.

Required Course Syllabus Statements

Generative AI

Generative AI is here to stay, and will only grow. It's important to understand both its strengths and limitations. AI is already proving its usefulness in brainstorming writing ideas, simplifying complex topics, and performing rudimentary research. AI is a tool with potential usefulness for almost everyone. Students can use AI in amazing ways to study which can include generating practice problems based on having AI analyze textbook images. However, AI is also fraught with serious issues. It possesses accuracy problems while simultaneously sounding very confident about its incorrectness. I have put some of my test questions into various AI bots, and they have difficulty with coming up with correct answers. It also frequently generates fake citations and quotations. It cannot understand the complexities and contexts of human communication. Finally, the way AI is trained on other texts poses several ethical questions about copyright and intellectual theft of property (along with uncritically inheriting the biases of the texts it's trained on).

To be clear, copying the exact wording of an AI chatbot is considered plagiarism and means that a student will be held accountable for violating academic integrity. Although many citation guides are already presenting ways to properly use and cite AI, I do not currently believe that citing AI in your work is in line with the standards of academic writing that value knowing the exact author(s) or sources that informed your writing. As generative AI has been an active participant in my class before, almost everything will be vetted through AI by me first before you all use it so I can see what type of responses/misconceptions it might be generating.

Using Remote Testing Software

 \boxtimes This course does not use remote testing software.

□ This course uses remote testing software. Remote test-takers may choose their remote testing locations. Please note, however, that the testing software used for this may conduct a brief scan of remote test-takers' immediate surroundings, may require use of a webcam while taking an exam, may require the microphone be on while taking an exam, or may require other practices to confirm academic honesty. Test-takers therefore shall have no expectation of privacy in their test-taking location during, or immediately preceding, remote testing. If a student strongly objects to using test-taking software, the student should contact the instructor at the beginning of the semester to determine whether alternative testing arrangements are feasible. Alternatives are not guaranteed.

Required University Syllabus Statements

Accommodations/Students with Disabilities

Students needing accommodations due to a permanent or temporary disability, pregnancy or pregnancyrelated conditions may contact UVU <u>Accessibility Services</u> at <u>accessibilityservices@uvu.edu</u> or 801-863-8747.

Accessibility Services is located on the Orem Campus in BA 110.

Deaf/Hard of Hearing students requesting ASL interpreters or transcribers can contact Accessibility Services to set up accommodations. Deaf/Hard of Hearing services can be contacted at <u>DHHservices@uvu.edu</u>

DHH is located on the Orem Campus in BA 112.

Academic Integrity

At Utah Valley University, faculty and students operate in an atmosphere of mutual trust. Maintaining an atmosphere of academic integrity allows for free exchange of ideas and enables all members of the community to achieve their highest potential. Our goal is to foster an intellectual atmosphere that produces scholars of integrity and imaginative thought. In all academic work, the ideas and contributions of others must be appropriately acknowledged and UVU students are expected to produce their own original academic work.

Faculty and students share the responsibility of ensuring the honesty and fairness of the intellectual environment at UVU. Students have a responsibility to promote academic integrity at the university by not participating in or facilitating others' participation in any act of academic dishonesty. As members of

the academic community, students must become familiar with their <u>rights and responsibilities</u>. In each course, they are responsible for knowing the requirements and restrictions regarding research and writing, assessments, collaborative work, the use of study aids, the appropriateness of assistance, and other issues. Likewise, instructors are responsible to clearly state expectations and model best practices.

Further information on what constitutes academic dishonesty is detailed in <u>UVU Policy 541: *Student*</u> <u>Code of Conduct</u>.

Equity and Title IX

Utah Valley University does not discriminate on the basis of race, color, religion, national origin, sex, sexual orientation, gender identity, gender expression, age (40 and over), disability, veteran status, pregnancy, childbirth, or pregnancy-related conditions, citizenship, genetic information, or other basis protected by applicable law, including Title IX and 34 C.F.R. Part 106, in employment, treatment, admission, access to educational programs and activities, or other University benefits or services. Inquiries about nondiscrimination at UVU may be directed to the U.S. Department of Education's Office for Civil Rights or UVU's Title IX Coordinator at 801-863-7999 – <u>TitleIX@uvu.edu</u> – 800 W University Pkwy, Orem, 84058, Suite BA 203.

Religious Accommodation

UVU values and acknowledges the array of worldviews, faiths, and religions represented in our student body, and as such provides supportive accommodations for students. Religious belief or conscience broadly includes religious, non-religious, theistic, or non-theistic moral or ethical beliefs as well as participation in religious holidays, observances, or activities. Accommodations may include scheduling or due-date modifications or make-up assignments for missed class work.

To seek a religious accommodation, a student must provide written notice to the instructor and the Director of Accessibility Services at <u>accessibilityservices@uvu.edu</u>. If the accommodation relates to a scheduling conflict, the notice should include the date, time, and brief description of the difficulty posed by the conflict. Such requests should be made as soon as the student is aware of the prospective scheduling conflict.

While religious expression is welcome throughout campus, UVU also has a <u>specially dedicated</u> <u>space</u> for meditation, prayer, reflection, or other forms of religious expression.