Quadratic Function (Explanation & Examples)

Quadratic Function

where a, b, and c are real numbers with $a \neq 0$, the function of the form:

$$f(x) = ax^2 + bx + c$$

Standard Form of a Quadratic Function

$$f(x) = a(x - h)^2 + k, a \neq 0$$

The graph of f is a parabola with **vertex** (h, k).

If a > 0, the parabola opens up, k is the **minimum value** of f;

If a > 0, the parabola opens down, k is the **maximum value** of f.

Steps for finding the Vertex (h,k) of $f(x) = ax^2 + bx + c$, $a \ne 0$:

- 1. Find the **x-coordinate** $h = -\frac{b}{2a}$ of the vertex.
- 2. Calculate $k = f\left(-\frac{b}{2a}\right)$ to find its **y-coordinate**.
- 3. If a > 0, then k is the minimum value of f.
- 4. If a > 0, then k is the maximum value of f.

EXAMPLE

Sketch the graph of $f(x) = -3(x+2)^2 + 12$

Sketch the graph of $f(x) = 3(x+2) + 12$	
Steps for graphing a Quadratic Function in Standard Form	$f(x) = -3(x+2)^2 + 12$
Step 1 The graph is a parabola because it has the form $f(x) = a(x - h)^2 + k$ Identify a, h, and k.	1. The graph of $f(x) = -3(x+2)^2 + 12$ $= -3[x - (-2)]^2 + 12$ $\uparrow \qquad \uparrow \qquad \uparrow$ a h k Is a parabola; $a = -3$, $h = -2$, and $k = 12$
Step 2 Determine how the parabola opens, if $a > 0$, the parabola opens up. If $a < 0$, it opens down.	2. Because $a = -3 < 0$, the parabola opens down.
Step 3 Find the vertex (h, k) . If $a > 0$ or $(a < 0)$, the function f has a minimum (or a maximum) value k at $x = h$.	3. The vertex $(h, k) = (-2,12)$. Because the parabola opens down, the function f has a maximum value of 12 at $x = -2$.
Step 4 Find the x - intercepts (if any). Let $f(x) = 0$ and solve $ax^2 + bx + c = 0$. If the solutions are real numbers, they are the x - intercepts. If not, the parabola lies entirely above the x - axis (when $a > 0$) or entirely below the x - axis (when $a < 0$).	4. $0 = -3(x+2)^2 + 12$ Set $f(x) = 0$. $3(x+2)^2 = 12$ Add $3(x+2)^2$ to both sides. $(x+2)^2 = 4$ Divide both sides by 3. $x+2=\pm 2$ Square root property $x=-2\pm 2$ Subtract 2 from both sides. x=0 or $x=-4$ Solve for x . The x - intercepts are 0 and -4 . The parabola passes through the points $(0,0)$ and $(-4,0)$.
Step 5 Find the y - intercept. Replace x with 0. Then $f(0) = ah^2 + k$ is the y - intercept.	$5. f(0) = -3(0+2)^2 + 12 = 0$. The y - intercept is 0. As already shown, the parabola passes through the origin (0,0).
Step 6 Sketch the graph. Plot the points found in Steps 3-5 and join them to form a parabola. Show the axis $x = h$ of the parabola by drawing a sashed vertical line. If there are no x - intercepts, draw the half of the parabola that passes through the vertex and a second point, such as the y - intercept. Then use the axis of symmetry to draw the other half.	6. The axis of the parabola is the vertical line $x = -2$. The graph of the parabola is shown in the figure. $f(x) = -3(x+2)^2 + 12$

EXAMPLE

Sketch the graph of $f(x) = 2x^2 + 8x - 10$

Steps for graphing any quadratic function.	$f(x) = 2x^2 + 8x - 10$

Step 1 Identify a, b, and c.	1. In the equation $y = f(x) = 2x^2 + 8x - 10$, $a = 2$,
	b = 8, and $c = -10$
Step 2 Determine how the parabola opens.	2. Because $a = 2 > 0$, the parabola opens up.
If $a > 0$, the parabola opens up;	
If $a < 0$, the parabola opens down.	
Step 3 Find the vertex (h, k) . Use the following	$3 h - \frac{b}{a} - \frac{8}{a} - 2$ $(a - 2 h - 8)$
formula:	3. $h = -\frac{b}{2a} = -\frac{8}{2(2)} = -2$ $(a = 2, b = 8)$
_	k = f(h) = f(-2)
$h = -\frac{b}{2a}$	$= 2(-2)^2 + 8(-2) - 10$ Replace h with -2
Zu	=-18 Simplify.
(b \	
$k = f\left(-\frac{b}{2a}\right)$	The vertex is $(-2, -18)$.
247	The function f has a minimum value of -18 at $x =$
k Is a minimum if $a > 0$.	-2 .
k Is a maximum if $a < 0$.	
Step 4 Find the x - intercepts (if any). Let $f(x) = 0$	$4. \ 2x^2 + 8x - 10 = 0 \qquad \text{Set } f(x) = 0.$
and solve $ax^2 + bx + c = 0$. If the solutions are real	$2(x^2 + 4x - 5) = 0$ Factor out 2.
numbers, they are the x - intercepts. If not, the	2(x+5)(x-1) = 0 Factor.
parabola lies entirely above the x - axis (when $a > 0$)	x + 5 = 0 or $x - 1 = 0$ Zeros-product property.
or entirely below the x - axis (when $a < 0$).	x = -5 or $x = 1$ Solve for x .
of enthery below the x axis (when a < 0).	The x - intercepts are at $x = -5$ and $x = 1$; the graph
	of f passes through the points $(-5,0)$ and $(1,0)$.
	or y pusses through the points (5,0) and (1,0).
Step 5 Find the y - intercept. Let $x = 0$. The result,	5. Set $x = 0$ to obtain $f(0) = 2(0)^2 + 8(0) - 10 =$
f(0) = c, is the y - intercept.	-10The y - intercept is -10 and the graph passes
$\int (0) - c, \text{ is the } y \text{ intercept.}$	through the point $(0, -10)$.
	through the point (0, 10).
Step 6 The parabola is symmetric about its axis, $x =$	6. The axis of symmetry is $x = -2$. The symmetric
l == =	image of $(0, -10)$ about the axis $x = -2$ is $(-4, -10)$.
$-\frac{b}{2a}$. Use this symmetry to find additional points.	11111111111111111111111111111111111111
Stan 7 Dwayy a navahala thuayah tha nainta farradin	7. The perchale pessing through the points in Stone 2
Step 7 Draw a parabola through the points found in	7. The parabola passing through the points in Steps 3-
Steps 3-6.	6 is sketched in the figure. $f(x) = 2x^2 + 8x - 10$
If there are no no intercents 1 the half of the	
If there are no x - intercepts, draw the half of the	-20 -10 0 10
parabola that passes through the vertex and a second	0
point, such as the y - intercept. Then use the axis of	
symmetry to draw the other half.	-20

