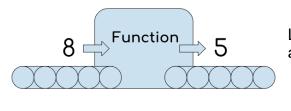
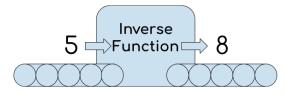
The word inverse means "opposite" or "reverse". So, if we start with a function that does something, its inverse is one that reverses it, or does the opposite.

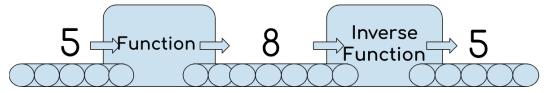


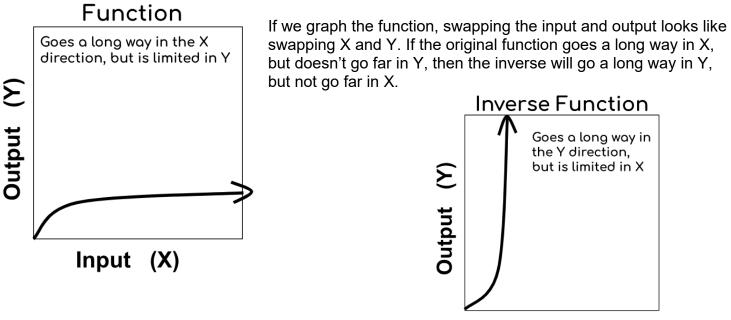
Let's say that we have a function that takes in 8 as an input, and puts out 5.



We want to find a function that does the reverse. In this case, if we gave the inverse function an input of 5, it would output 8.

If you put something through a function, and then its inverse, you get back what you started with. The original function does something to the input, and then the inverse undoes it.



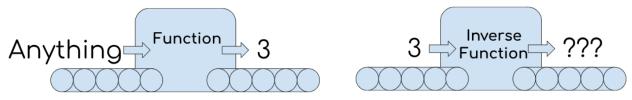


Input (X)

If you have a function written as an equation, you also find its inverse by switching X and Y, and then solving to get Y alone again.

Example 1:	Example 2:
•	$f(x) = x^3 + 7$
y=15x-30	, (,
\Downarrow	•
x = 15y = 30	$y = x^3 + 7$
₩	\Downarrow
▼	$x = y^3 + 7$
x + 30 = 15y	↓
\Downarrow	•
•	$x - 7 = y^3$
$\frac{x+30}{15} = y$	\Downarrow
\Downarrow	$\sqrt[3]{x-7} = y$
$y = \frac{x+30}{15}$	\Downarrow
2 15	$y = \sqrt[3]{x - 7}$

It's important to know that not every function has an inverse. For example, if I have a function that outputs 3 no matter what you put in, there's no way to undo it.



There is a nice visual way to know whether a function has an inverse function. If the function looks like something you could roll a ball down with no bumps, then it does have an inverse function.

