Infinite Series Convergence Tests

Limit Test/ Divergence Test	If $\lim_{n \to \infty} a_n = 0$, the series converges, otherwise it diverges
Ratio Test	If $\lim_{n \to \infty} \left \frac{a_{n+1}}{a_n} \right < 1$, the series is absolutely convergent. If > 1, it diverges. If equal to 1, it is inconclusive.
Root Test	If $\lim_{n\to\infty} \sqrt[n]{ a_n } > 1$, the series is absolutely convergent. If > 1, it diverges. If equal to 1, it is inconclusive.
Integral Test	If a_n is positive and decreasing, then let $f(n) = a_n$. Then if $\lim_{t\to\infty} \int_1^t f(x)dx < 0$, the series converges. If the integral diverges, the series diverges as well.
P-series Test	Let $k > 0$. Then $\sum_{n=k}^{\infty} \left(\frac{1}{n^p}\right)$ converges if $p > 1$. If n and $k = 1$, it is the Harmonic series, which diverges.
Direct Comparison Test	If $\sum_{n=1}^{\infty} b_n$ converges absolutely and $ a_n \le b_n $ for large enough n , then $\sum_{n=1}^{\infty} a_n$ converges absolutely.
Limit Comparison Test	If series a and series b are both positive, and $\lim_{n\to\infty} \left(\frac{a_n}{b_n}\right)$ exists, is finite and nonzero, then either both series converge, or both diverge.
Absolute Convergence Test	If $\sum_{n=0}^{\infty} a_n = L$, where L is a real number, then the series converges absolutely.
Alternating Series Test	If: a_n are all positive, $\lim_{n\to\infty} a_n = 0$, and a_n is always decreasing, Then the series is convergent.

