Financial Math Formulas

Simple one-time interest $I = P_0 r$ $A = P_0(1 + r)$	Annuity $P_n = \frac{d\left(\left(1 + \frac{r}{k}\right)^{nk} - 1\right)}{\left(\frac{r}{k}\right)}$
Simple Interest over time $I = P_0 rt$ $A = P_0(1 + rt)$	Payout Annuity $P_{0} = \frac{d\left(1 - 1\left(1 + \frac{r}{k}\right)^{-nk}\right)}{\left(\frac{r}{k}\right)}$
Compound interest	Loans
$P_n = P_0 \left(1 + \frac{r}{k}\right)^{nk}$	$P_0 = \frac{d\left(1 - 1\left(1 + \frac{r}{k}\right)^{-nk}\right)}{\binom{r}{k}}$
Continuous compound interest	Monthly Payments
$P(t) = P_0 e^{rt}$	$A = P_0 \left(\frac{(r(1+r)^n)}{(1+r)^n - 1} \right)$

Key:

- \star *I* interest
- \star A end amount
- ★ P_0 Principle starting amount
- ★ P_n balance in the account after n years
- \star *n* the amount of time that has already passed
- \star r interest rate as a decimal
- \star t time in years
- * *k* number of compounding periods in a year (if compounded monthly k = 12)
- \star *d* regular deposit
- ★ *e* the number e approximately 2.71

More handouts like this are available at: uvu.edu/mathlab