## Factoring Polynomials of Degree 3 or More:

A polynomial's degree is determined from the highest exponent. For example,

$$f(x) = 16x^4 + 8x^3 + 2x^2 + 1$$

is a polynomial of degree 4 because the highest exponent is 4.

- 1. First, check whether a GCF (Greatest Common Factor) can be factored out. If the lead coefficient is negative, it is easier to make it positive to factor by factoring 1 out of the polynomial. Don't forget to include these results in your final expression!
- 2. What is the form of the polynomial after checking for a GCF?

| Name:                   | Form:           | Approach:                                                                           |
|-------------------------|-----------------|-------------------------------------------------------------------------------------|
| Sum of Cubes            | $a^{3} + b^{3}$ | $= (a+b)(a^2-ab+b^2)$                                                               |
| Difference of<br>Cubes  | $a^3 - b^3$     | $= (a-b)(a^2+ab+b^2)$                                                               |
| Four Term<br>Polynomial | 4-terms or more | Use grouping to factor and rewrite the expressions as the product of two binomials. |

(See the Synthetic Division handout for more factoring methods)

3. Has the factoring produced another polynomial which can be further factored, such as

 $a^2 - b^2 = (a + b)(a - b)?$ 

If so, refer to the Solving Quadratics Handout.

4. Polynomials that cannot be factored are called **prime**.



## Strategies for Factoring Special Polynomials:

Finding Pairs of Factors:

Given  $ax^2 + bx + c$ , find m and n so that mn = ac and m + n = b.

For example, given  $12x^2 - x - 6$ , find m and n so that  $mn = 12 \cdot -6 = -72$  and m + n = -1

Make a t-table and list all possible pairs of factors of ac on one side and check if their sum is b on the other side:

| Product: $ac = -72 = mn$                                                                                                   | Sum: $b = -1 = m + n$                                                                             |
|----------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------|
| Product: $ac = -72 = mn$<br>$1 \cdot -72$<br>$2 \cdot -36$<br>$3 \cdot -24$<br>$4 \cdot -18$<br>(5 is not a factor of -72) | Sum: $b = -1 = m + n$<br>1 + (-72) = -71<br>2 + (-36) = -34<br>3 + (-24) = -21<br>4 + (-18) = -14 |
| (5 is not a factor of $-72$ )<br>$6 \cdot -12$<br>(7 is not a factor of $-72$ )<br>$8 \cdot -9$                            | 6 + (-12) = -6 $8 + (-9) = -1$                                                                    |

## Factoring Four Term Polynomials Using Grouping

- Group pairs of terms with common factors. Be sure to keep that second minus sign *inside* the parentheses and put a plus sign in the middle.
  Factor out the GCF from each grouping. When the first term in the group is negative, factor out
- a negative.3. Factor out the new GCF which will be the

binomial in parentheses and rewrite as the

product of two binomials.

$$=(3x-5)(x-2)$$

