Exponential & Logarithmic Functions

An exponential function is of the form

 $f(x) = b^x,$

Where *b* is the base and b > 0 and $b \neq 1$.

A logarithmic function is of the form

 $f(x) = \log_b x,$

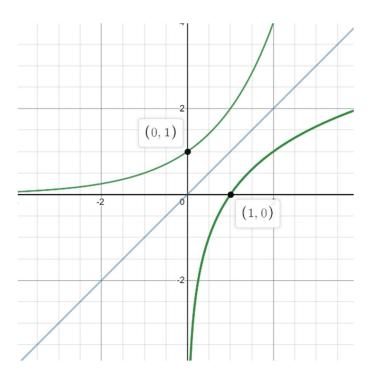
Where *b* is the base and x > 0, b > 0, and $b \neq 1$

Logarithmic and Exponential functions are inverse functions, which means that

 $y = \log_b x$ is the same as saying $b^y = x$

and

 $y = b^x$ is the same as saying $\log_b y = x$



More handouts like this are available at: uvu.edu/mathlab

Since Logarithmic and Exponential functions are inverse functions, their properties are related.

Properties of Exponents

Properties of Logarithms

$b^{0} = 1$	$\log_b 1 = 0$
$b^1 = b$	$\log_b b = 1$
$b^{-1} = \frac{1}{b}$	$\log_b \frac{1}{b} = -1$
$b^x = b^x$	$\log_b b^x = x$ for all $x, b^{\log_b x} = x$ when $x > 0$
$b^m b^n = b^{m+n}$	$\log_b M \cdot N = \log_b M + \log_b N$
$\frac{b^m}{b^n} = b^{m-n}$	$\log_b \frac{M}{N} = \log_b M - \log_b N$
$(b^m)^p = b^{m \cdot p}$	$\log_b M^p = p \cdot \log_b M$

Special Logarithmic Functions

Common log: $\log_{10} x = \log x$

Natural log: $\log_e x = \ln x$

Change of base formula

 $\log_b x = \frac{\log x}{\log b} = \frac{\ln x}{\ln b}$

Examples

$$2^{3} = 8 \leftrightarrow \log_{2} 8 = 3$$
$$e^{x} = 5 \leftrightarrow \ln 5 = x$$
$$4 \log x = 2 \leftrightarrow \log x^{4} = 2 \leftrightarrow 10^{2} = x^{4}$$

 $4 \log x = 2 \leftrightarrow \log x = 2 \leftrightarrow 10 = x$

More handouts like this are available at: uvu.edu/mathlab

Common Applications of Exponential Functions

Compound Interest

If P is the initial deposit, and interest is paid n times per year at an annual rate of r, the amount A in the account after t years is given by

$$A = P\left(1 + \frac{r}{n}\right)^{nt}$$

Radioactive Decay

If *A* is the amount of radioactive material present at time *t*, A_0 was the amount present at t = 0, and *h* is the material's half-life, then

$$A = A_0 2^{-t/h}$$

Exponential Growth/Decay

If P is the population at some time t, P_0 is the initial population at t = 0, and r is the rate of growth/decay, then

$$P = P_0 e^{rt}$$

Common Applications of Logarithmic Functions

pH of a Solution

If [H+] is the hydrogen ion concentration in gram ions per liter, then

$$pH = -\log[H+]$$

Decibel Voltage Gain

If the output voltage to a device is E_0 volts and the input voltage is E_1 , then the decibel dB gain is given by

dB gain =
$$20 \log \frac{E_0}{E_1}$$

The Richter Scale

If R is the intensity of an earthquake on the Richter Scale, A is the amplitude (measured in micrometers) of the ground motion and P is the period (the time of one oscillation of the Earth's surface measured in seconds), then

$$R = \log \frac{A}{P}$$

More handouts like this are available at: uvu.edu/mathlab

