The Airbenders' Wind Turbine Nathan Bevan, Cole Diepeveen, Clayton Hutchings, Ruth Kapinga, Matt Osborne, Jehu Pineda

Coaches: Abdennour Seibi, Brett Stone

Introduction

Our goal was to prepare future UVU teams for the Collegiate Windmill Competition sponsored by the Department of Energy. To do this we built a competition-scale turbine according to competition rules.

We subdivided the project into three important design areas: blades, electrical, and nacelle.

Blades	
+	
Electrical	Y
+	
Nacelle	

Objectives

- Design and assemble a fully functioning scale model of a wind turbine
- Create a design that begins producing power at the lowest possible wind speed
- Achieve the highest power output with respect to wind speed.
- Explore innovative designs

- \bigcirc
- Used competition rules to establish product specifications • Utilized morph charts, screening &

- Implemented sensors to detect motor rpm, voltage, current and power outputs
- Developed a multi-path load to optimize power depending on windspeed and blade rotation (rpm)
- Breaking system that helps control the blade rpm based on power generated

Innovative Approaches

Research & Development

- scoring matrices, and prototyping
- techniques to evaluate over 80 designs

 Continuous Variable Planetary system (CVP) instead of a gearbox Material was SLA resin for high durability

Analyses

- thoroughly against cut-in criteria in a wind tunnel
- using ANSYS, Altair,

It Static Structural
Equivalent Stress
Type: Equivalent (core Mirel) Shees
Unit MPs
Tena 11
3/29/2023 T1 20 AM
6-0-000
- 1.342 Max
1 1000
1.450
1.000
C. SARES
0.36557
0.59646
0.44715
0,09605
0 14044
Table Fam.
 Storie SMa

 Tested lift and drag turbines speed, max voltage, and rpm • Performed failure analyses

Fusion360, SOLIDWORKS and some hand calculations

Fun Facts:

- Lift style turbines are more commonly used in large scale industrial wind farms and utilize long, narrow blades
- Drag style turbines feature wider blades and are mainly used for small scale energy production

Results

Conclusion

- Following the design process, we were able to build a functioning wind turbine according to the DOE-CWC guidelines. It provided a great learning
 - experience for interdisciplinary engineering students.

