

Capstone Project:

High Power Rocket

TEAM MEMBERS:

Curtis Burgess, Brady Casper, Shenille Fiack, & Mindy Young **COACH:** Masood Amin

Presentation Outline:

01

PROJECT OVERVIEW

• Summary of project background and objectives

05

07

04

ANALYSIS /SIMULATIONS

MODELING /PROTOTYPING

Evidence of substantial modeling

• Methods of engineering analysis and simulations

02

PROBLEM DEFINITION

 Research of the rocket design problem, competition, codes, and standards.

03

CONCEPT GENERATION & SELECTION

• Design space exploration and concept selection processes

06 MAN

MANUFACTURING

and prototyping

Process of the rocket and ACS construction

FINAL DESIGN

• Explanation of final design

⁰¹ Project Summary/Overview⁺

Project Goals

- Design and Build a rocket for competition in the Spaceport America Cup
 - Deliver an 8.8 lb payload to a precise altitude of 10,000 ft AGL
 - Safe recovery of rocket & payload
 - Reusable rocket
 - Using a commercial solid fuel rocket motor

Adjustments

- Continued as if competing in SA cup
- Final launch scheduled April 23rd
- Apogee changed to 8,000 ft AGL due to 10,000 ft waiver regulations

ROCKETRY ASSOCIATION, INC.

Problem Definition

• Create a rocket that will carry a 8.8 lb payload to a precise apogee of 10,000 ft.

Researching the problem:

- Referenced SA cup Handbook rules and regulations
- Talked with real world experts
 - UROC rocketeers
 - Tripoli prefects
 - SA cup competition forum
 - Dr. Nielsen (Physics department)
- Referenced NFPA 1122, 1127 regulations

SPACEPORT AMERICA®

CUP

• Referenced FAA regulations for rocketry in 14 CFR

Problem Definition

No.	Customer Need	No.	Rocket Metric	Value	Units
1	Removable payload of no less than 8.8 lbs	1	Removable payload minimum weight	8.8	lbs
2	Achieve an appoge of precisely 10,000 ft AGL	2	Achieve exact altitude	10,000 +-50	ft AGL
3	Installed impulse no greater than 40,960 Newton-seconds	3	Motor impulse maximum value	40,960	N*s
4	Carry a barometric pressure altimeter with on-board data storage	4	Bbarometric sensor(s)	2	sensors
5	Redundant electronic recovery system(s)	5	Electronic recovery system(s)	2	systems
6	Rocket survives recovery	6	Maximum Ground Impact speed	<20	m/s
7	Rocket is stable during flight	7	Rocket stability caliber	>1	Cal
8	Reusable rocket	8	Ability to relaunch	2	Launches
9	Afordable cost	9	Project cost	5500	\$
10	Rocket ability to withstand launch acceleration	10	withstand max acceleration of	539.55	m/s^2

Concept Generation

Internal Search & Systematic Exploration

- Generated concepts individually, then met as a team to discuss and present
- Broke the concept generation down to rocket components which allowed for easy mix and match to create full concepts
- Created a concept database on Onenote

External search

- Talked to real experts locally
- Met with Utah Rocket Club
- Researched solutions online
- Experimented with software simulations

03

Concept Selection

- A concept generation/selection matrix was used to create ten complete concepts.
- Scoring Matrix was then used to select which design best fit the design requirements.
 - Cost and ability to accurately achieve altitude were some of the key criteria.

Criteria	Importance	+
Cost	15.00%	5
Manufaturing feasability	10.00%	5
Reliability of multiple use	10.00%	3
light weight	10.00%	6
Ability to accurately achive altitude	25.00%	7
Heat resistance	5.00%	5
Recovery redundancy	15.00%	5
Creativity	5.00%	4
Aesthetics	5.00%	3
total score	100.00%	43

	A	В	С	D	E	F	G	н	1	J	ĸ
1						Concepts					
2	component		1	2	3	4	5	6	7	8	9 10
3	Fin	M1	S13	C2	B3	M1	C1	B2	S8	S14	B4
4	Body tube	B2	B1	B3	B2&C1	B1	B2	C1	C1	B2	B1
5	Nose cone	S6	S3	S4	B1	S5	B5	S	B1	S3	S2
6	Recovery system	B3	B1	C5	B3	M1	B2	C1	C3	B1	C1
7	Altitude control system	C2	C1	B2	B1	C4	C2	В	C3	B3	C3

Modeling

CAD Modeling: Fusion 360

- Using Fusion 360, a full rocket design was created to determine the dimensions of final design.
- ACS was modeled in Fusion 360.
- Fabrication of rocket needed precise placement of fins and couplers which were machined based of modeling.

Modeling: Electronic Systems

ACS Control Board

Prototyping

3D Printing

- 3D printed various rocket components to explore spacial and kinetic functionality.
- 3D printed prototype of ACS was used to determine functionality.
 - Refined versions resulted in better movement capabilities.

Scaled Prototypes

- Smaller scale rockets were launched to prove concept viability.
 - These prototypes doubled as Tripoli level 1 & 2 certification rockets.

Analysis/Simulations

- FEA was used to determine the deformation of flaps.
- Boundary conditions:
 - Fixed base
 - Vertical force on loading band
- Safety factor of 9
- Max displacement of 0.012 mm
- Determined to manufacture the ACS out of aluminum to avoid pinching of the flaps

05

Analysis/Simulations

- Rocket simulation in OpenRocket for stability, center of pressure, and center of gravity.
- OpenRocket simulation will have max velocity, apogee, and flight time.

Manufacturing

- CNC machine was used to cut fins, centering rings, and bulkheads.
- ACS was machined out of aluminum
- Fin slots were milled into fiberglass body tube
- Rocket body sections epoxied and or riveted together
- 3D printed fin stabilizers used for accurate placement
- Carbon fiber was added to epoxy on fins for added strength

7 Final Design

- Rocket body: G12 wound Fiberglass tube
- **Recovery system:** Parachute dual deployment
- Drag System:
 - Machined Aluminum ACS
 - Stepper motor
 - Custom PCB and flight computer
- Motor: Aerotech L-1000
- Fins: Offset trapezoidal
- **Expected apogee:** 8561 ft.
- Estimated corrected apogee: 8000 ft.
- Expected ground impact speed: 8 m/s

