PING-PONG PLAYING ROBOT

MECHANICAL ENGINEERING

UTAH VALLEY UNIVERSITY

CAPSTONE – FINAL REVIEW SPRING 2022

Group Members: Patrick Butler Daniel Hernandez David Evans Noah Parker Derek Wright

Coach:

Dr. Matt Jensen

PRESENTATION OVERVIEW

- Problem Definition
- Concept Generation and Selection
- Modeling, Testing and Analysis
- Final Design
- Questions/Feedback

gamesrader+. 2010. Retrieved from https://www.gamesradar.com/wii-ping-pong-controller-iscoolest-most-useless-wii-controller-ever/

PROJECT GOALS

- Follow the engineering design process
- Work in a project management setting
- Build an interactive, game-playing robot
- Represent the Engineering Program

"The Enterprisers Project" Retrieved from https://enterprisersproject.com/article/2019/5/rpa-robotic-processautomation-how-explain

PROBLEM DEFINITION

- Robot Capabilities:
 - Interactively Play Ping-Pong
 - Meet all safety standards
- Completion Within Timeframe
 - September 2021 April 2022
- Stay Within Budget
 - \$5,625.00

Collabforge. 2014. The Einstein Problem Definition Process. Retrieved from https://collabforge.com/the-einstein-problem-definition-process/

EXPLANATION AND EVIDENCE FOR DESIGN NEEDS

The Design and Needs were defined by

- Interviewing Players
 - Novice
 - Intermediate
- Independent Research
 - Peer Evaluated Journals
 - Documented Projects
 - Brain Storming

Inside the games. 2019. Retrieved from https://www.insidethegames.biz/articles/1078357/different-colour-rubbersto-be-permitted-in-table-tennis-after-tokyo-2020

CUSTOMER NEEDS

No.	Customer Needs		
1	Autonomously play Ping-Pong		
2	Easy to transport		
3	Easily operable		
4	Variable difficulty settings		
5	Minimal assembly required		
6	Reasonably priced		

UGN. Identify a Customer's Needs for Better Sales. Retrieved from https://ugn.com/customers-needs-better-sales/

DESIGN REQUIREMENTS

- Design requirements were developed for:
 - Standard Ping-Pong Table
 - Maximum Ball Speed of 40 ft/s

TIGER PONG. Room Size. Retrieved from https://tigerpingpong.com/room_size

Metrics for Playing Mechanism	Value	Units
Maximum paddle travel speed	10	ft/s
Paddle range of motion (radius)	3	ft
Possible ball return vertical angles	± 45	deg.
Possible ball return horizontal angles	± 30	deg.
Paddle position accuracy at location of ball	1.5	in
Paddle reaches ball position late	< 10	%
Ball return angle accuracy (vertical and horizontal)	2	deg.
Rate of successfully returned serves	80	%

DESIGN REQUIREMENTS CONTINUED

Cardboard Prototype

Metrics for Vision System/Processing	Value	Units
Calculated ball position accuracy	1.5	in
requency of locating the ball's current position	60	Hz
Frequency of Ball Position Calculation	120	Hz
Works with common background setting	1	bin
Likelihood of equipment damage per game	0.5	%
Electrical Power Consumption	<1800	W
Enjoyable ping-pong game	1	subj.
Robot endurance (continuous game-play)	>1	Hr.
Robot meets OSHA/ANSI Guidelines for Robotic Safety	1	bin
Portability (packed size without table)	<6	ft^3

APPLICABLE CODES AND STANDARDS

• The control of hazardous energy (OSHA, 1910.147)

• Any Machines that create a hazard must have safeguards (OSHA, 1910.212)

• Use of limiting devices (ISO 10218-1:2011)

Emergency Stop Switch. Retrieved from https://www.pepperlfuchs.com/global/en/classid_2395.htm

Limit Switch. Retrieved from https://wecount.com/product/down-limitswitch/

CONCEPT GENERATION FACTORS

- Hit Velocity
- Ease of Transportation
- Cost
- Range of Motion
- Play-Time Endurance
- Accuracy of Ball Placement

Conceptual image of racket motion planning for return shots -Omron Robotics

CONCEPT SCORING MATRIX

Criteria	Weights (%)	Gantry System	Robot Arm	4-Paddle Arm
Hit Velocity	10	3	5	4
Ease of Setup/Transportation	5	3	5	4
Cost/Part Quality	10	4	2	5
Range of Motion (Volume)	23	5	3	2
Paddle Velocity/Location	25	4	5	3
Accuracy of Return Ball in Play	17	4	5	2
Stability/Moments Created	10	4	3	5
Weighted Total		4.08	4.04	3.4
Complexity to Break Tie		3	1	-

VISUAL CONCEPT GENERATION

- Xbox 360 Kinect
- Single Camera
- Two Synchronized Cameras

Xbox 360 Kinect - Microsoft

DimaxCS High speed camera - Pco.

ELP 3D Stereo Camera - ELP

BALL DETECTION SELECTION MATRIX

Criteria	Weights (%)	1 Camera	2 Cameras, Synched Internally	2 Cameras, Synched Externally
Accuracy	30	3	5	4
Complexity	15	5	5	1
Cost	10	5	4	2
Portability	10	3	5	5
Durability	5	3	5	5
Weighted Total		2.6	3.4	2.15

MODELING & PROTOTYPING

AutoCAD

- Ping-Pong Table Frame
- Motor Mounting and Hardware
- Design Belt Assembly for 3D printing
- **3D Printing -** Testing/creating custom hardware

Ping-Pong Table Frame

Belt Assembly Design

Belt Assembly 3D Printed

Motor Mounting

ELECTRICAL DESIGN

- Motion Controller
 - Teknic ClearCore
- Stepper Motors
 - NEMA 17 and NEMA 24
- Stepper Drivers
 - StepperOnline DM542T
- Power Supplies
- Camera Data Processing

Completed Electrical Component Board

Simplified Wiring diagram

SOFTWARE DESIGN

Motion Control

- Arduino IDE
 - ClearCore Wrapper

Video Processing

- Python
 - OpenCV
 - PyZED

• Serial

OpenCV and Python logos

FINAL DESIGN/PROTOTYPE

- Gantry System with 2 Degrees of Freedom
- ZED 2i STEREOVISION Camera
- Successfully returns serves
- Can achieve a volley of 3

ZED 2i stereovision camera by STEREOLABS

Final Prototype

FINAL DESIGN IN ACTION

Questions

