Pavement Tester

Caleb Robinson, Eric Mickelsen, Mason Peterson, Josh Scott Coach: Dr. Abdennour Seibi

Agenda

- Project Overview
- Problem Definition
- Concept Generation and Selection
- Modeling, Testing and Analysis
- Final Design
- Questions

Project Overview

Design and create a stationary linear mechanical device that would be able to measure the vertical distance a fixture (blade, tire, etc.) goes into a road sample surface in regards to a specific reference point and accurately measure that distance. The machine needs to allow the test specimens to be replaced as well as be user-friendly.

Problem Definition

• UDOT Survey

Max LengthxWidthxHeight	8x8x4 ft		
Test Material	Small sections of road samples		
Snow Plow Blade Size	Cut to length		
Power Supply	110 and 220		
Environmental Canditiana	Snow, freezing temps, winter		
Environmental Conditions	conditions		
Tire size/type	Small Car		
Willing to Pay	\$10-20K		
Sample	asphalt or concrete		
Control the Load	Ability to change the load		

• UDOT 3 years and 3 miles

Existing Customer Specifications

Permanent Specifications	Metric	Units
•	Removable internal Solid-State Drive	
Data Storage	Removable Internal Solid-State Drive	GB or TB
Testing Road Surfaces	Able to access sample easily	
		y/n
Safety	Hearing and Eye Protection Required	y/n
Ingress Protection	IP56 Rating	y/n
Material and Parts Cost	<\$5000	US Dollars
Max Length x Width x Height	10x8x6	Feet
Snow Plow Blade Size	Cut to length size blade	Inches
Power Supply	110 and 220	Volts
Environmental Conditions	Snow, freezing temps, winter conditions, rain	GPM
Test Material Types	asphalt or concrete	y/n
Control the Load	Ability to change the load on blades/tires	lbs
Run Time	How long the device will run	Hours

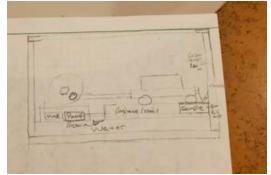
Variable Specifications

Possible Changing Specifications	Metric	Units
Size of Test Sample	Small sections of road/Core samples	in^2
Max Applied Wheel Force	Amount of force applied to the wheel	Pounds
Мах RPM	30	RPM
Tire Size	Small Car	inches
Design Type	Linear design or Rotational Design	y/n
Tire Weight	Small Car	Pounds
Mobility	If the device can be moved easily	Ft, Ibs

Applicable Codes and Standards

- ANSI
- SAE

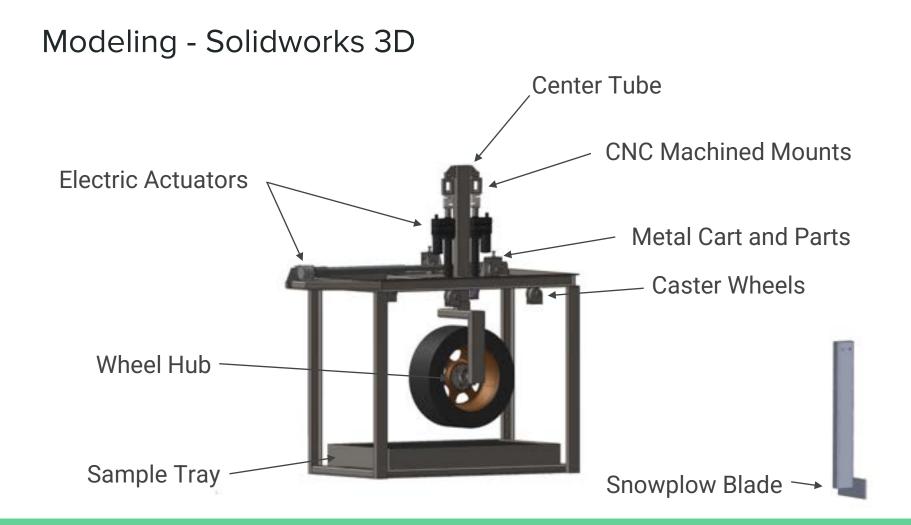
- With our project being a continuation of the previous year, we were able to use some of the feedback that was given to the previous team. Dr. Seibi received some feedback from the Utah Department of Transportation (UDOT).
- ➤ The feedback gave us outline to follow for the concepts we generated.
- UDOT wanted a machine that could fit in a lab setting, cost less, use a linear motion for testing method, and be able to test the wear caused by tires/plows.


- At first, we adopted the previous road tester team's specifications (and its accompanied units), then tried to adapt it to our new scope. We also added specifications from brainstorming sessions and the research we had done.
- We looked at each specification from the previous year and voted on the relevance it had with our new scope. We kept the highest scored (scores >3.5) specifications.

SPECIFICATION	VALUE		
MAX APPLIED BLADE FORCE	280Ubs per 4ft section		
MAX APPLIED WHEEL FORCE	175i.bs		
DATA STORAGE	Removable Solid-State Drive		
TESTING SURFACE ACCESS	Be able to access sample easily		
SAFETY	Hearing and Eye Protection Require		
INGRESS PROTECTION	IP56 Rating		
ROAD CONDITION RECREATION	Wetting Nozzles		
MATERIAL AND PARTS COST	<\$5000		
DESIGN TYPE	Linear		

Final Specs	Metric	Units	Average Score
Testing Road Surfaces	Able to access sample easily	sin	Contraction of the local division of the
Max Length x Width x Height	Safet	Feet	3.75
Test Material Size	3x1.5x1 (241x121X31)	n .	3.75
Control the Force/Load	Ability to change the load on test flature	8aN	4.5
Cycle Counter	Complete Cycles	Cpmi#	4.5
Measure Force	amount of force applied to sample	Pounds	4.5
Safety	Heating and Eye Protection Required	s/h	4.25
Design Type	Linear Motion	y.	5
Material and Parts Cost	<5000	US Dolars	3.75
Environmental Conditions	Wet (salt water)	GPM .	3.5
Modularity	Wheel hub and plow bracket	ym .	5.21
Tire Size	205/50/15 +hub	inches	3.25
Data Storage	Computer/Arduino/pi	68	6.25
Mobility	Anchoring System	FVIbs or Oly	4.25
Upgradeable/Retrofit	Ability to modify later	MFG processes	35
Data Collection	Horizontal and Vertical Displacement	alvohes, fi	4
User Friendly Interface	MattabilProgrammable	Y/m	4.75
Speed of a Cycle	How quickly the device will cycle on the sample.	RPM	3.21

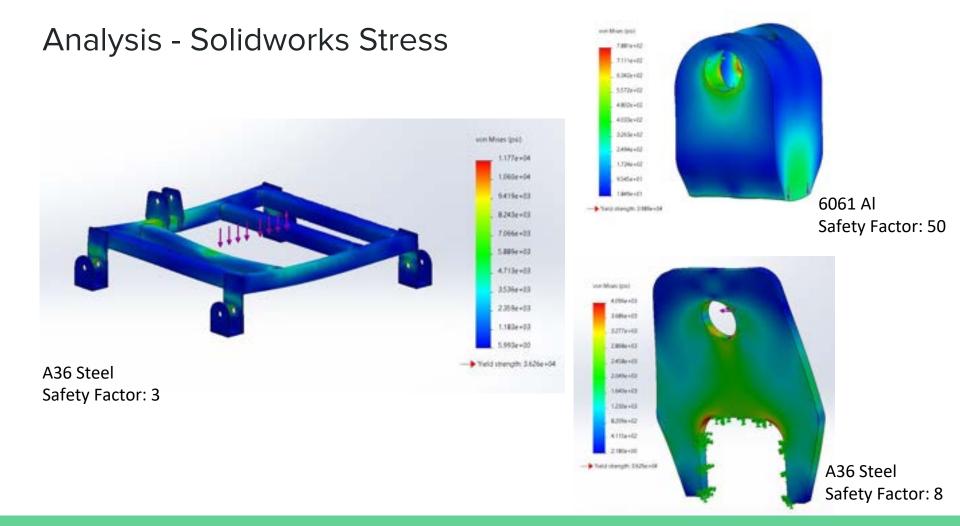
- Initial concept generation was broken up into 3 different sessions. Each individual team member came up a concept and presented that concept to the team at each session.
- We graded each concept on whether the concept fulfilled each specification on a 1-5 scale. We gave the concept a 5 if it fulfilled the specification.

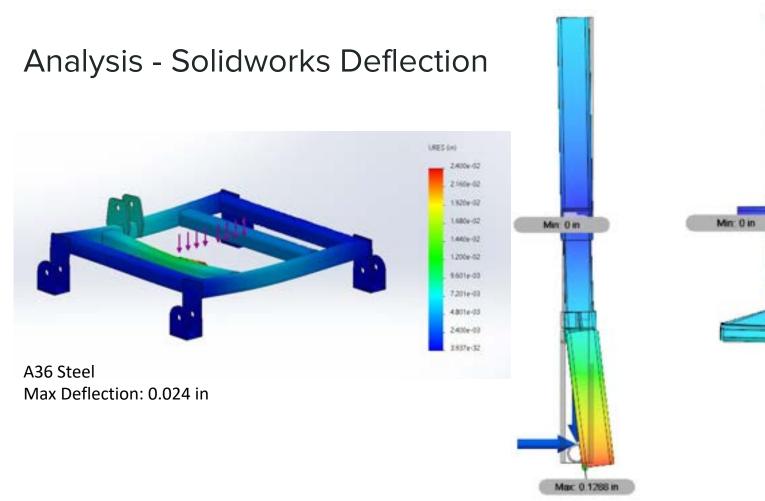


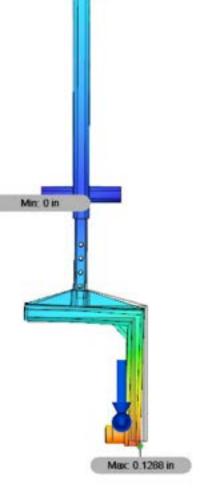
- Each concept was scored in a matrix to show which concept fulfilled each specification the best.
- We decided, as a team, to take the best scored attributes from each concept and combine them into a single concept.

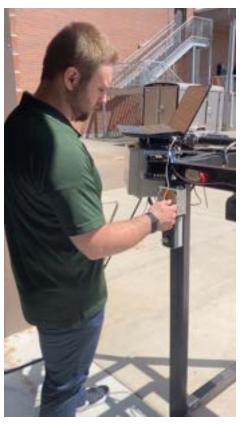
Specifications VS. CONCEPT	Mason's Concept	Caleb's Concept	Josh's Concept	Eric's Concept
Testing Road Surfaces	5	5	4	5
Max Length x Width x Height of Machine	5	5	5	2
Test Material Size	4	5	5	5
Control the Force/Load	5	3	3	5
Cycle Counter	5	4	4	3
Measure Forces	5	4	4	4
Safety	1	5	3	3
Design Type	5	5	5	5
Material and Parts Cost	3	3	4	2
Environmental Conditions	3	3	4	- 4
Modularity	5	5	3	5
Power Supply	S	5	5	5
Tire Size	5	4	5	5
Ingress Protection	4	1	5	3
Data Storage	3	2	3	4
Mobility	5	3	4	2
Weight	2	3	4	2
Test Area (Tire)	5	5	5	5
Upgradeable/Retrofit	5	5	3	5
Data Collection		3	3	5
User Friendly Interface	3	3	3	5
Total Score	4.3	4.05	4.2	4.2

As a team, we generated a model that represented our final selection of the best attributes for our end concept.






Exploded Model


Final Design

Goal of Project:

- Lab Setting
- Test Paint
- Apply a Load
- Use Tires or Blades

Demonstration

Questions?