SAE BAJA Final Design Presentation

Team Members: Bringhurst

Nick Nathan Garfield Young Lee

Bryce McCleary

Coach: DP: Seam Wilden

UTAH VALLEY UNIVERSITY

Presentation Overview

- 1. Baja SAE
- 2. Background
- 3. Problem Research
- 4. Requirements
- 5. Concept Generation
- 6. Concept Selection
- 7. Prototyping
- 8. Analysis
- 9. Development
- 10. Final Design
- 11. Conclusion

Baja SAE (Society of Automotive Engineers)

- Worldwide collegiate competition
- Entirely student-run effort
- Competition of off-road vehicles

Background

2019 UVU Baja Team

• Designed/Built rollcage and rims

2021 UVU Baja Team

- Integrated new designs and made a working 2WD vehicle
- Competed in Arizona Baja SAE

2022 UVU Baja Team Goals

- Design and build a robust functioning 4WD system
- Subframe design shielding 4WD components

Problem Research

Interviews

 Mechanics, ATV/UTV enthusiasts, and everyday drivers

Forum Searches

• Baja SAE forums provided insight from other competing teams

Competition Rules

- Set requirements which need to be met
- **Internet Searches**
- Researched 4WD/Drivetrain methods

Requirements

BAJA SAE RULES

INTERNATIONAL®

• Adequate ground clearance and traction

• Four or more wheels, not in a straight line

• All four wheels must have power delivered to them

• Universal joints in the steering system need to be

Requirements

APPLICABLE CODES AND STANDARDS

 Baja SAE requires that all fasteners be SAE grade 5 or Metric grade 8.8

Requirements DESIGN REQUIREMENTS

Metric	Importance	Units	Acceptable value
Number of wheels with power	1	# of wheels with power	4
4WD system last x hours without part failure	2	hours	> 300
Number of gear choices	3	Number of gear choices	infinite
4WD system can withstand quick acceleration	2	acceleration (m/s^2)	2
Ground clearance (unloaded)	4	inches	> 12
Time to assemble	3	hours	< 2
Time to dissassemble	5	hours	< 1
Adequate suspension travel	4	in	7
Low Cost (4WD upgrade)	5	USD	< 3000
Weight of 4WD system	5	pounds	< 200
Vehicle will withstand crashes up to x mph	6	miles per hour	30

Concept Generation

Concept Selection

CONCEPT TREE

Concept Selection

SCREENING MATRICES

	A	В	c	D	E	F	G	н	
1		Concepts							
2	Selection Criteria	Localized Fluid	Centralized Fluid	Belt Drive (solid)	Belt Drive Differential	Chain Drive (solid)	Chain Drive Differential	Shaft Drive (Reference)	
3	Necessary Frame modifications	+	-		0		0	0	
4	Weight of added system			+	0	+	0	0	
5	Durability	0	-		-	-	-	0	
6	Ease of using 4WD	0	0	+	0	+	0	0	
7	Ground Clearance	+	0	+	0	+	0	0	
8	Acceleration	-	3 4 3	2940	· • ·			0	
9	Simplicity	-	-	+	-	+		0	
10	Power loss	-	-	+	0	+	0	0	
11	Ease of repair	*	3.0	+	0	+	0	0	
12	Plusses	2	0	6	0	6	0	0	
13	Sames	2	2	0	6	0	6	0	
14	Minuses	5	7	3	3	3	3	0	
15	Net	-3	-7	3	-3	3	-3	0	
16	Rank (1=best)	5	7	1	6	2	4	3	
17	Continue?	N	N	Y	N	Y	Y	Y	

Concept Selection

SCORING MATRICES

		Concepts							
		Chain Drive (Differential)		Belt Drive (Solid)		Chain Drive (Solid)		Shaft Drive	
Selection Criteria	Weight	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score	Rating	Weighted Score
Necessary Frame modifications	25%	2	0.5	3	0.75	3	0.75	2	0.5
Weight of added system	5%	4	0.2	5	0.25	4	0.2	3	0.15
Durability	15%	2	0.3	2	0.3	3	0.45	5	0.75
Ease of engaging 4WD	10%	4	0.4	5	0.5	5	0.5	4	0.4
Ground Clearance	10%	3	0.3	3	0.3	3	0.3	2	0.2
Acceleration	10%	1	0.1	2	0.2	2	0.2	5	0.5
Simplicity	5%	1	0.05	4	0.2	3	0.15	3	0.15
Power loss	5%	2	0.1	2	0.1	2	0.1	4	0.2
Ease of repair	15%	4	0.6	4	0.6	4	0.6	3	0.45
Total Score (out of 5)		2.55		3.2		3.25		3.3	
Rank			4		3		2		1
Continue?		1	NO	NO		NO		YES	

Concept Selection SELECTED CONCEPT

- Standard differential design
- Differential and CV axles from Yamaha ATV
- Custom rear gearbox, driveshaft, steering knuckle, hub adapters

Prototyping 3D MODELING

Steering Knuckle Model

Hub Adapter

Prototyping 3D MODELING

Rear Gearbox Model

Chassis Subframe Model

Analysis ATV HAND CALCULATIONS

- Dynamometer data from another Baja Team and an ATV user was used
- Maximum torque output for the Baja vehicle and the selected ATV was calculated
- Based on the maximum loading for the ATV motor the factor of safety is 2.21

Power Source	Measurement source		Torque (ft-lb)	HP	Output RPM
		max torque	15.85	8.2	2718
	Dyno'd Motor	max hp	13.85	9.1	3450
	Max gear ratio	max torque	570.6	8.2	75.50
DAJA	36:1	max hp	498.7	9.1	95.83
	Min gear ratio	max torque	88.76	8.2	485.4
	5.6:1	max hp	77.58	9.1	616.1
		max torque (no data)			
	Max gear ratio 46.18:1	max hp	27.28	32.67	6290
ATV		max torque (no data)			
, , , ,		max hp	1260	32.67	136.2
	Min gear ratio 25.73:1	max torque (no data)			
		max hp	701.9	32.67	244.5

Analysis DRIVE SHAFT HAND CALCULATIONS

- Internal stresses were calculated using:
 - the maximum torque from Baja vehicle
 - static torsional shear stress equations
 - static transverse shear stress equations.
- Axial loading was ignored because there should be none.
- Selected shaft with the lightest weight with an acceptable safety factor (>1).

		1.25x.125	1.25x.25	
Tube Size (in)	.75 S80	DOM	DOM	1 S40
Material	A500	1020	1020	A500
ID (in)	0.74	1	0.75	0.96
OD (in)	1.05	1.25	1.25	1.32
TtorMax (psi)	39990	25880	20513	21052
TtorMax (ksi)	39.99	25.88	20.51	21.05
TshearMax (psi)	58690	49193	26804	31664
TshearMax (ksi)	58.69	49.19	26.80	31.66
Weight (lbs)	5.90	6.02	10.71	8.73
Degree of twist	9.5	6.8	5.4	5.0
Safety Factor (T)	0.66	1.02	1.43	1.25
Safety Factor (S)	198	211	433	366

Analysis FINITE ELEMENT ANALYSIS

Stress Plots Results of FEA on Hub Adapters

Analysis FINITE ELEMENT ANALYSIS

Stress Analysis Plots of Subframe

Development

MACHINED COMPONENTS

Big Gear Plate

Small Gear Plate

Steering Knuckles

Development

FABRICATED COMPONENTS

Rollcage with Subframe

Rear Gear Box

Development FABRICATED COMPONENTS

Steering Knuckle with Bearing holder

Drive Shaft

Spline Adapter for Drive Shaft

Steering Knuckle - CV Axle

CV Axle - Differential

Drive Shaft - Rear Gear Box

Drive Shaft - Differential

Conclusion

- Researched the Problem
 Set Design Requirements
 Generated Concepts
 Final Concept Selected
 Modeled Machined & Fabricated Parts
- Analyzed Components
- Built

SOURCES

https://contentgrid.homedepot-static.com/hdus/en_US/DTCCOMNEW/Articles/grades-of-bolts-section-3.jpg

https://en.wikipedia.org/wiki/SAE International

https://www.engineering.com/story/tennessee-tech-baja-sae-from-the-mouse-to-the-mud-bogs

https://engineering.unl.edu/nebraska%E2%80%99s-baja-team-climbs-top-five-oregon/