CIVIL ENGINEERING

Lindsay Helm Design Team Manager 10808637@uvu.edu

Project Objectives

The intersection of 800 South and 800 West in Orem, Utah experiences traffic congestion during peak morning and afternoon hours. The Orem master plan shows a bridge over I-15 and UVU has plans to develop the SW corner of the

intersection into student housing. This will put an increased load on the current traffic control system at the intersection. Our objective is to redesign the intersection to be able to handle the existing conditions and projected growth.

Pre-Design and Planning

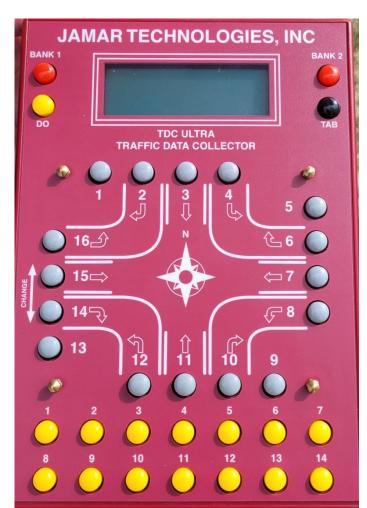


Figure 1. Traffic Count Board

Figure 2. Orem Transportation Master Plan

Before the design process the project team prepared a Traffic Signal Warrant Analysis (TSWA) to report the traffic count data and the satisfied warrants. The warrant analysis reported that Warrants 1, 2, 3 and 8 were satisfied with existing conditions and future projected traffic data.

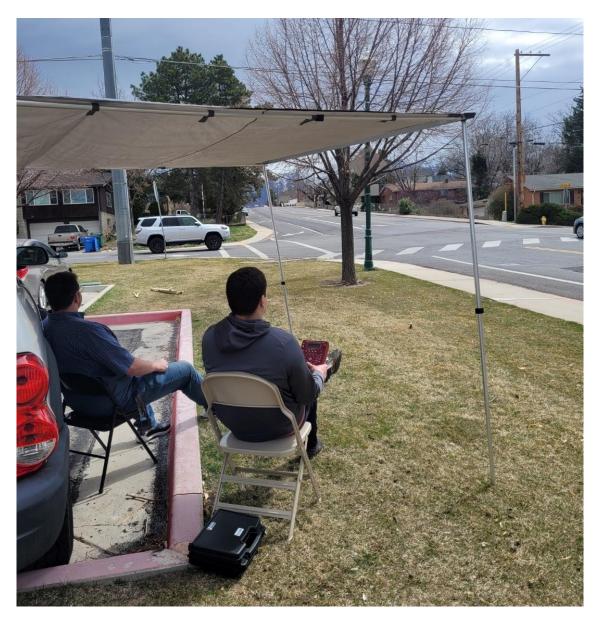


Figure 3. Team Traffic Count

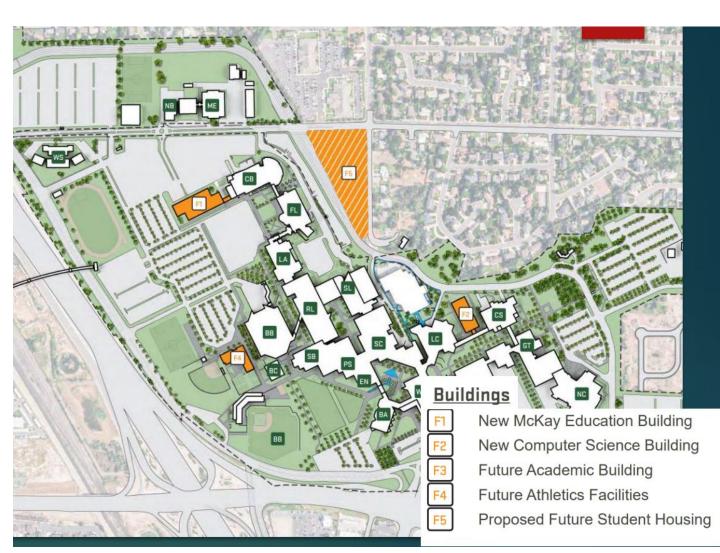


Figure 4. UVU Master Plan

800 South & 800 West Intersection

Civil Engineering Capstone Spring 2024

Robert Rydalch

Technical Team Manager 10592379@uvu.edu

Figure 1. Intersection Location

Design Concept Development

During the Fall 2023 semester of the Capstone course the design team developed three alternative concept designs as possible traffic control solutions.

Vehicle-oriented traffic control signal

2) One lane compact urban roundabout

Pedestrian friendly traffic control signal The technical team evaluated each design concept according to seven defined criteria. A weight was given to each metric by the City of Orem based on a 1-5 scale.

- 1. Maintenance Cost (5)
- 2. Safety of Pedestrian Crossings (5)
- Conflict Issues (5)
- Capital Cost (5)
- ROW Cost (3)
- Emergency Access and Response (3)
- Maintenance Requirements (3)

Technical Design Alternatives

During the Spring 2024 semester of the Capstone course the technical team identified three areas of design that required alternative analysis. The design team then developed and evaluated alternatives for each identified area.

- Signal Heads Type IV, Type V, Type VI
- Pedestrian Access Ramps Parallel, Apex, Perpendicular, Directional
- Signal Timing System Fixed Time Coordination, Peer to Peer Communication, Central Control, Adaptive Control

				Importance	Quantitative Measures		
Category	ID	Evaluation Criteria	Evaluation Criteria Definition	1 (least)-5(Most)	1 (Low)	3 (Neutral)	5 (High)
Operations	AO.1	Maintenance	Special requirement for		More than comparable	Same as comparable	Less than comparable
		requirements	maintenance	3	alterantives	alternatives	alternatives
Safety	PS.1		Considerations regarding				
			pedestrians crossing the		Unprotected pedestrian		Protected pedestrian
			intersection with design option		crossing with no	Same as comparable	crossings with uniform
		Safety For Pedestrians	implemented	5	uniform access	alternatives	access
			Considerations regarding				
	PS.2		passenger vehicle safety with		Higher that comparable	Same as comparable	Lower that comparible
		Safety for Vehicles	design option implemented	5	alternatives	alternatives	alternatives
Cost			Capital cost to implement				
	CT.1		design option including		Higher cost than other	Same as comparable	Lower cost than other
		Capital Cost	materials and equipment	5	alternatives	alternatives	alternatives
			The annual costs to maintain				
	CT.3		the design option including		Higher cost than other	Same as comparable	Lower cost than other
		Maintenance Cost	repairs, landscaping, cosmetics	3	alternatives	alternatives	alternatives

Figure 5. Technical Design Metrics

Matthew Snyder **Project Manager** 10911440@uvu.edu

Sam Kelly City of Orem srkelly@orem.gov

Based on the defined metrics and the warrants satisfied, the project team determined that a vehicle-oriented traffic control signal that follows the existing turning movements and lane conditions with updated pedestrian access ramps, signing, striping, and crosswalks would be the best solution to improve future traffic conditions. The final traffic control signal design included directional pedestrian access ramps, peer to peer signal timing coordination, and Type V signal heads that provide protected left turn movements to create the safest and most efficient intersection for all road users, including pedestrians.

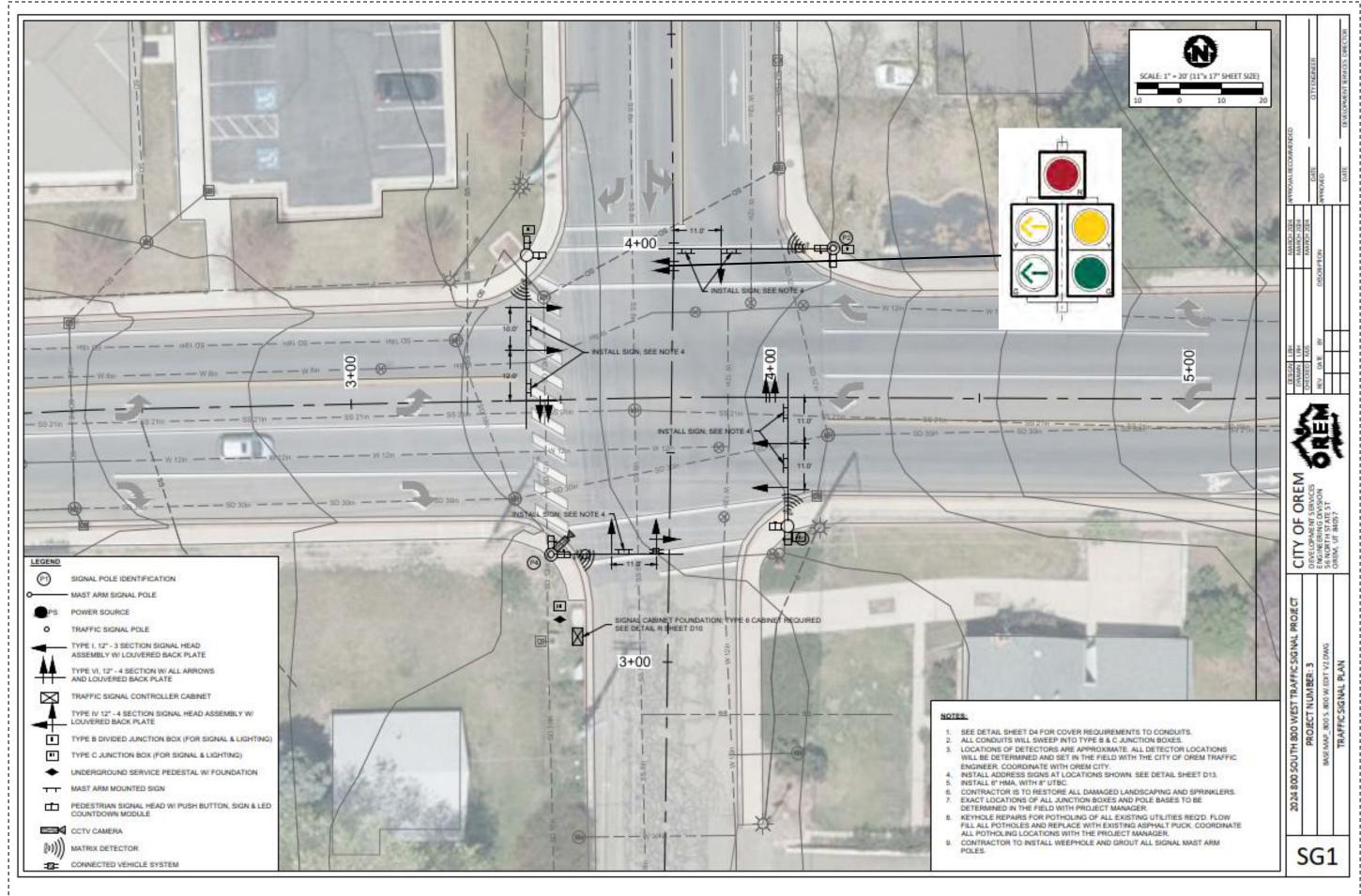


Figure 6. SG1 Signal Plan Sheet

Resources and Software Manual on Uniform Traffic Control Devices 2009 Edition • 2024 UDOT Standard Drawings and Specifications • City of Orem Construction Standards and Specifications • Civil 3D and Bluebeam Studio Software

Final Design Recommendations